Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Hydrogen-bonded complexes of 2-pyridone with centrosymmetric and non-centrosymmetric dicarboxylic acids

Setsuo Kashino,* Takeo Fukunaga, Hironobu Izutsu and Shiho Miyashita

Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700-8530, Japan
Correspondence e-mail: kashinos@cc.okayama-u.ac.jp

Received 20 October 2000
Accepted 12 February 2001

2-Pyridone (2-oxopyrimidine) forms hydrogen-bonded complexes with dicarboxylic acids, the molar ratio of 2-pyridone/di carboxylic acid being $2: 1$ for the complexes with oxalic acid (ethanedioic acid), $2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$, (I), and trans- β-hydromuconic acid (trans-hex-3-enedioic acid), $2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO} \cdot \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$, (II), and 1:1 for the complexes with trans-glutaconic acid (trans-pent-2-enedioic acid), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}$, (III), and L-tartaric acid (L-2,3-dihydroxybutanedioic acid), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}$-$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, (IV). Common features in the hydrogenbonding patterns were found for the centrosymmetric and non-centrosymmetric acids, respectively. The 2-pyridone molecule takes the lactam form in these crystals.

Comment

2-Pyridone has been extensively studied because it exhibits lactam-lactim tautomerism, and the lactam group can be regarded as a model of cis-peptides and of the purine and pyrimidine bases of nucleic acids (Yang \& Craven, 1998; Field \& Hillier, 1987). The crystal structure of 2-pyridone has been determined from high-resolution X-ray data at 123 K , and the molecule is in the lactam form (Yang \& Craven, 1998). In the present study, the title complexes, (I)-(IV), have been prepared with the expectation that the lactam group of the 2-pyridone could be a building unit of a supramolecular synthon, and so the hydrogen-bonding patterns and the geometries of the 2-pyridone moiety in the four complexes have been elucidated.

The hydrogen-bond patterns in (I) and (II) are shown in Figs. 1 and 2, respectively. In the crystals of (I) and (II), a molecule of the acid has a centre of symmetry. Two molecules of 2-pyridone related by an inversion centre form a dimer via an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The dimeric unit and the acid molecule are connected by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond
between the carboxyl group and the O atom of 2-pyridone, to form a chain (Figs. 1 and 2; Tables 2 and 4). In (I), the chains are arranged side by side to form a sheet along (1111). These sheets are stacked along the c axis, with short contacts $\mathrm{O} 3 \cdots \mathrm{C} 7^{\mathrm{ii}}=3.302(2) \AA$ and $\mathrm{O} 3 \cdots \mathrm{C} 7^{\mathrm{iii}}=3.307(2) \AA$ [symmetry codes: (ii) $1-x,-y,-z-1$; (iii) $x, y, z-1$]. In the chain of (II), a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction is observed (Table 4). The chains are arranged around the twofold screw axis, with normal van der Waals contacts and no sheet structure is

(I)

(II)

(III)

(IV)
formed. In spite of the difference in the packing mode of the chains in (I) and (II), the patterns of the hydrogen bonds in the chains show a common feature in these crystals. Thus, hydrogen-bond scheme (1), as found in (I) and (II), can be recognized as the supramolecular synthon (Desiraju, 1995) possible in complexes of 2-pyridone/centrosymmetric dicarboxylic acid in the ratio 2:1.

(2)

(1)

The acid molecules in (III) and (IV) have no centre of symmetry (Figs. 3 and 4). In both crystals, one carboxyl group

Figure 1
A molecular view of (I) showing the hydrogen-bonding pattern and the atomic numbering scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.

Figure 2
A molecular view of (II) showing the hydrogen-bonding pattern and the atomic numbering scheme for the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.

Figure 3
A molecular view of (III) showing the hydrogen-bonding pattern and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
forms an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a 2-pyridone molecule (Tables 6 and 8). The O2-H10 $\cdots \mathrm{O} 1$ hydrogen bond in (IV) is short, the $\mathrm{O} 2-\mathrm{H} 10$ bond length being elongated, as found for a short non-centrosymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond in ammonium hydrogen tartronate [$\mathrm{O}-\mathrm{H} 1.18$ (3) \AA and $\mathrm{O} \cdots \mathrm{O} 2.443$ (2) \AA; Taka et al., 1998]. It could not be confirmed whether atom H 10 is disordered, because the difference Fourier map for H10 showed a single peak. In (III), the other carboxyl group forms an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a 2 -pyridone molecule at $\left(x-1, \frac{1}{2}-y\right.$, $\left.\frac{1}{2}+z\right)$ to form a zigzag chain, and the chains form a sheet along (102) via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Fig. 5 and Table 6). The other carboxyl group in (IV) forms a hydrogen bond with a water molecule. The water molecule forms bifurcated hydrogen bonds with the acid molecules related by a translation along a and by the twofold screw axes along the a axis, forming a sheet parallel to (040) (Fig. 6 and Table 8). Between the sheets related by the twofold screw axes along the c axis,

Figure 4
A molecular view of (IV) showing the hydrogen-bonding pattern and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.

The molecular arrangement along (201) of (III), viewed down the c axis. The a axis points to the right and the b axis points upwards. Hydrogen bonds are shown by dotted lines. [Symmetry codes: (i) $x-1, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x, 1-y, 1-z$; (iv) $1+x, \frac{1}{2}-y, z-\frac{1}{2}$; (v) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.]
there is a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction and some short contacts between overlapping 2-pyridone molecules: $\mathrm{C} 9-\mathrm{H} 7$ 0.976 (12), $\mathrm{H} 7 \cdots \mathrm{O} 1^{\mathrm{v}} 2.563$ (13), C $9 \cdots \mathrm{O}^{\mathrm{v}} 3.255$ (2) Å, and C9—H7…O1v $127.9(10)^{\circ}$; O3...C4 ${ }^{\text {vi }} 3.186$ (3), O1…C6 ${ }^{\text {vii }}$ 3.373 (3), N1 $\cdots \mathrm{C}^{\text {vii }} 3.280(3)$ and $\mathrm{C} 2 \cdots \mathrm{C}^{\mathrm{vii}} 3.302 \AA$ [symmetry codes: (v) $\frac{1}{2}-x, 1-y, z+\frac{1}{2}$; (vi) $\frac{3}{2}-x, 1-y, z-\frac{1}{2}$; (vii) $\left.\frac{3}{2}-x, 1-y, \frac{1}{2}+z\right]$. Because hydrogen-bond scheme (2) is found in both (III) and (IV), it can be recognized as the supramolecular synthon possible in complexes of 2-pyridone/ non-centrosymmetric dicarboxylic acid in the ratio 1:1.

The geometries of the 2-pyridone moieties observed in compounds (I)-(IV) (Tables 1, 3, 5 and 7) show a common feature characteristic of the lactam form, as found in the crystal of 2-pyridone (Yang \& Craven, 1998). The C-C distance $[1.544$ (2) \AA] of oxalic acid in (I) is rather long for a Csp ${ }^{2}$ - Csp p^{2} bond, as observed in dimorphs of oxalic acid [1.537 (1) \AA; Derissen \& Smith, 1974], and close to that determined for oxalic acid dihydrate at 15 K [1.5423 (5) Å; Zobel et al., 1992].

Figure 6
A view down the c axis showing the formation of a double layer in (IV) through the hydrogen bonds involving water molecules. The a axis points to the right and the b axis points upwards. Hydrogen bonds are shown by dashed lines. [Symmetry codes: (i) $x-1, y, z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$; (iv) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$.]

Experimental

Crystals of the four title compounds were grown by slow evaporation from ethanol solutions of 2-pyridone and the respective dicarboxylic acid, with molar ratios of $1: 1$. Commercially available L-tartaric acid (Aldrich) was used for the preparation of (IV).

Compound (I)

Crystal data

$2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	$Z=1$
$M_{r}=280.24$	$D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.162(3) \AA$	Cell parameters from 18
$b=9.898(3) \AA$	reflections
$c=3.7672(17) \AA$	$\theta=9.4-11.5^{\circ}$
$\alpha=98.86(4)^{\circ}$	$\mu=0.12 \mathrm{~mm}^{-1}$
$\beta=97.66(3)^{\circ}$	$T=298 \mathrm{~K}$
$\gamma=109.61(3)^{\circ}$	Prismatic, colourless
$V=311.6(2) \AA^{3}$	$0.50 \times 0.38 \times 0.35 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer

$\omega / 2 \theta$ scans

1645 measured reflections
1428 independent reflections
1336 reflections with $I>0.1 \sigma(I)$
$R_{\text {int }}=0.006$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R(F)=0.059$
$w R\left(F^{2}\right)=0.098$
$S=1.98$
1336 reflections
115 parameters

$$
\begin{aligned}
& h=-11 \rightarrow 11 \\
& k=-12 \rightarrow 12 \\
& l=0 \rightarrow 4 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: }<0.9 \%
\end{aligned}
$$

All H -atom parameters refined $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00031\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{O} 1-\mathrm{C} 2$	$1.2683(15)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3573(19)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.3573(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.404(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.3554(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.3507(19)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.4191(16)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$123.88(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.89(12)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$118.99(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.49(12)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$125.19(11)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$118.39(12)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$115.81(11)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.53(12)$

Table 2
Hydrogen-bonding geometry ($\left(\AA,{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 6 \cdots \mathrm{O} 1$	$0.96(2)$	$1.62(2)$	$2.5774(16)$	$174.0(19)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{i}}$	$0.91(2)$	$1.89(2)$	$2.7967(16)$	$173.1(15)$

Symmetry code: (i) $2-x, 1-y,-z$.

Compound (II)

Crystal data

$2 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO} \cdot \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$
$M_{r}=334.33$
Monoclinic, $P 2_{1} / n$
$a=9.824$ (3) \AA
$b=5.5720(17) \AA$
$c=15.556$ (5) \AA
$\beta=101.31$ (3) ${ }^{\circ}$
$V=835.0(5) \AA^{3}$
$Z=2$
$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10-11^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prismatic, colourless
$0.43 \times 0.35 \times 0.20 \mathrm{~mm}$
Data collection
Rigaku AFC-5R diffractometer
$h=0 \rightarrow 13$
$\omega / 2 \theta$ scans
2802 measured reflections
2429 independent reflections
2187 reflections with $I>0.1 \sigma(I)$
$R_{\text {int }}=0.009$
$\theta_{\text {max }}=30^{\circ}$

Refinement

Refinement on F^{2}
$R(F)=0.059$
$w R\left(F^{2}\right)=0.102$
$S=1.93$
2187 reflections
146 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00022\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.010$
$k=0 \rightarrow 7$
$l=-21 \rightarrow 21$
3 standard reflections every 97 reflections intensity decay: $<0.1 \%$
$\Delta \rho_{\max }=0.26 \mathrm{e}_{\mathrm{max}} \AA^{-3}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1967)

Extinction coefficient: $1.6(4) \times 10^{-6}$

Table 3
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$) for (II).

O1-C2	$1.2639(13)$	C3-C4	$1.3488(18)$
N1-C2	$1.3652(15)$	C4-C5	$1.395(2)$
N1-C6	$1.3540(16)$	C5-C6	$1.3526(19)$
C2-C3	$1.4191(16)$		
			$120.86(11)$
C2-N1-C6	$123.57(10)$	C2-C3-C4	$120.90(11)$
O1-C2-N1	$119.22(10)$	C3-C4-C5	$118.54(12)$
O1-C2-C3	$125.04(10)$	C4-C5-C6	$120.38(12)$
N1-C2-C3	$115.74(10)$	N1-C6-C5	

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H9 $\cdots \mathrm{O} 1$	$0.94(2)$	$1.68(2)$	$2.6078(14)$	$171.1(16)$
N1-H1 O^{i}	$0.93(1)$	$1.93(1)$	$2.8465(15)$	$172.8(12)$
C6-H5 $^{\mathrm{H}} \mathrm{OB}^{\mathrm{i}}$	$0.93(1)$	$2.30(1)$	$3.1492(19)$	$150.9(11)$

Symmetry code: (i) $1-x,-y,-z$.

Compound (III)

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}$
$M_{r}=225.20$
Monoclinic, $P 2_{1} / c$
$a=7.889$ (3) \AA
$b=16.839(10) \AA$
$c=8.288$ (2) A
$\beta=100.49(3)^{\circ}$
$V=1082.5(7) \AA^{3}$
$Z=4$
$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=10.8-11.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prismatic, colourless
$0.43 \times 0.40 \times 0.27 \mathrm{~mm}$

Data collection

Rigaku AFC- $5 R$ diffractometer	$h=0 \rightarrow 9$
$\omega / 2 \theta$ scans	$k=0 \rightarrow 20$
2298 measured reflections	$l=-10 \rightarrow 10$
2128 independent reflections	3 standard reflections
1848 reflections with $I>0.1 \sigma(I)$	every 97 reflections
$R_{\text {int }}=0.016$	intensity decay: $<0.3 \%$
$\theta_{\max }=26^{\circ}$	

Refinement

Refinement on F^{2}
All H -atom parameters refined $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00022\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.010$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 5
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$) for (III).

O1-C2	$1.271(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.360(3)$
N1-C2	$1.359(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.395(3)$
N1-C6	$1.357(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.335(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.407(2)$		
			$120.25(19)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$123.72(17)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.8(2)$
O1-C2-N1	$118.53(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.9(2)$
O1-C2-C3	$125.31(17)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.2(2)$
N1-C2-C3	$116.13(17)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	

Table 6
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 10 \cdots \mathrm{O} 1$	0.89 (3)	1.78 (3)	2.658 (2)	168 (2)
$\mathrm{O} 4-\mathrm{H} 11 \cdots \mathrm{O} 1^{\text {i }}$	0.92 (3)	1.72 (3)	2.601 (2)	158 (3)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	1.02 (2)	1.80 (2)	2.811 (2)	168.8 (18)
$\mathrm{C} 4-\mathrm{H} 3 \cdots \mathrm{O}{ }^{\text {ii }}$	0.97 (2)	2.41 (2)	3.339 (3)	160.8 (17)
C6-H5 . ${ }^{\text {O }} 4^{\text {iii }}$	1.01 (2)	2.47 (2)	3.457 (3)	165.2 (17)
$\mathrm{C} 3-\mathrm{H} 2 \cdots \mathrm{O} 5^{\text {iv }}$	0.92 (2)	2.56 (2)	3.397 (3)	150.8 (15)

Compound (IV)

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO} \cdot \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=263.20$
Mo $K \alpha$ radiation
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Cell parameters from 25

> reflections
$a=8.528$ (5) \AA
$\theta=10.8-11.5^{\circ}$
$b=20.668$ (8) Å
$\mu=0.14 \mathrm{~mm}^{-1}$
$c=6.5438(15) \AA$
$T=295 \mathrm{~K}$
$V=1153.4(7) \AA^{3}$
Prismatic, colourless
$Z=4$
$0.53 \times 0.28 \times 0.20 \mathrm{~mm}$
$D_{x}=1.516 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5R diffractometer	$R_{\text {int }}=0.011$
$\omega / 2 \theta$ scans	$\theta_{\max }=32^{\circ}$
Absorption correction: ψ scan	$h=0 \rightarrow 12$
\quad (North et al., 1968)	$k=0 \rightarrow 30$
$\quad T_{\min }=0.952, T_{\max }=0.999$	$l=-1 \rightarrow 9$
2660 measured reflections	3 standard reflections
2303 independent reflections	every 97 reflections
2064 reflections with $I>0.1 \sigma(I)$	intensity decay: $<0.5 \%$

Table 7
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$) for (IV).

O1-C2	$1.262(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.350(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.368(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.391(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.365(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.340(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.409(3)$		
			$121.5(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$123.18(19)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.8(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$119.92(18)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.4(2)$
O1-C2-C3	$124.78(19)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.8(2)$
N1-C2-C3	$115.30(18)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	

Table 8
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$ for (IV).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 10 \cdots \mathrm{O} 1$	1.20 (2)	1.30 (2)	2.487 (2)	168.2 (18)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.96 (2)	1.92 (2)	2.878 (2)	171.6 (15)
O6-H11..-O8	0.84 (2)	1.79 (2)	2.625 (2)	173 (2)
O5-H9 . . O 4	0.95 (2)	2.36 (3)	2.781 (2)	106.7 (19)
$\mathrm{O} 8-\mathrm{H} 12 \cdots \mathrm{O} 3^{\text {i }}$	0.86 (3)	2.22 (3)	2.914 (2)	138 (2)
$\mathrm{O} 8-\mathrm{H} 12 \cdots \mathrm{O} 4^{\text {i }}$	0.86 (3)	2.23 (3)	2.991 (3)	147 (2)
$\mathrm{O} 4-\mathrm{H} 8 \cdots \mathrm{O} 8^{\text {ii }}$	0.80 (2)	1.98 (2)	2.772 (2)	171 (2)
$\mathrm{O} 8-\mathrm{H} 13 \cdots \mathrm{O} 7^{\text {iii }}$	0.80 (2)	2.21 (2)	2.902 (2)	145 (2)
$\mathrm{O} 8-\mathrm{H} 13 \cdots \mathrm{O} 5^{\text {iii }}$	0.80 (2)	2.33 (2)	2.980 (2)	140 (2)
$\mathrm{O} 5-\mathrm{H} 9 \cdots \mathrm{O}^{\text {iv }}$	0.95 (2)	1.97 (2)	2.846 (2)	152 (2)

Refinement

Refinement on F^{2}
$R(F)=0.044$
$w R\left(F^{2}\right)=0.044$
$S=1.81$
2064 reflections
216 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00001\left|F_{o}\right|^{2}\right]$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.010 \\
& \Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { Zachariasen (1967) } \\
& \text { Extinction coefficient: } \\
& 1.68(12) \times 10^{-6}
\end{aligned}
$$

All H atoms were located from difference Fourier maps and were refined isotropically. The ranges of $U_{\text {iso }}$ values for the H atoms were 0.051 (3) -0.084 (4) \AA^{2} for (I), 0.054 (3) -0.085 (4) \AA^{2} for (II), 0.055 (5) -0.154 (10) \AA^{2} for (III) and 0.015 (3)-0.146 (10) \AA^{2} for (IV). Values larger than $0.1 \AA^{2}$ were observed for H 10 and H11 in (III), and for $\mathrm{H} 9, \mathrm{H} 10$ and H 12 in (IV). The least-squares refinement of (IV) was carried out assuming the chirality of L-tartaric acid and removing redundant diffraction data.

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN.

This work was supported by a Grant-in-Aid for Scientific Research (No. 09640609) from the Ministry of Education, Science, Sports and Culture, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1582). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Derissen, J. L. \& Smith, P. H. (1974). Acta Cryst. B30, 2240-2242.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Field, M. J. \& Hillier, I. H. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 617-622. Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Taka, J., Ogino, S. \& Kashino, S. (1998). Acta Cryst. C54, 384-386.
Yang, H. W. \& Craven, B. M. (1998). Acta Cryst. B54, 912-920.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Zobel, D., Luger, P., Dreissig, W. \& Koritsanszky, T. (1992). Acta Cryst. B48, 837-848.

